Islamic University of Technology (1UT)
Organization of Islamic Cooperation (OIC)
Department of Electrical and Electronic Engineering (EEE)

Course No.: EEE 4606
Course Name: Microcontroller Based System Design Lab

Project Name: Designing a calculator using 8051 Microcontroller
Submission Date: 17.10.19

Section: C1

Group: 1

Group Members:
® Md Moinul Islam Khan 160021011
® Sabiha Sharmin 160021047
® Sabbir Ahmed 160021059
® Sanjida Ali 160021057
® Mohibul Islam 160021077
® Jubair Alam 160021085
® Fariha Mehjabin 160021095
® Tasnim Zaman Adry 160021157

Objective

To design a calculator which can add, subtract (able to show negative number),
multiply and divide the two inputs which will be given from the keypad and result
will be displayed in the LCD display.

Introduction

The 8051 Microcontroller is one of the most popular and most commonly used
microcontrollers in various fields like embedded systems, consumer electronics,
automobiles, etc. Technically called as Intel MCS-51 Architecture, the 8051
microcontroller series was developed by Intel in the year 1980 and were very
popular in the 80’s (still are popular). 8051 Microcontroller has many features like
Serial Communication, Timers, Interrupts, etc. Even though 8051 Microcontroller
might seem a little bit out of fashion, we feel that it is one of the best platforms to
get started with Microcontrollers, Embedded Systems and Programming (both C
and Assembly).

As we know 8051 is an 8-bit microcontroller which has 4KB of ROM and 128
Bytes of RAM. By this microcontroller we can do many kinds of programmable
projects. Such as password access control, motor control, real time clock (RTC)
etc. Here in this project we have made a calculator using this 8051 microcontroller.
Here we have done simple arithmetic operations like addition, subtraction,
multiplication and division. Primarily, the user will provide the numbers and the
respective arithmetic operation. When the equal sign is pressed, then the desired
result will be shown as output in the LCD display. As we have 8-bit registers in the
microcontroller 8051, we can only perform operations which do not exceed 255 in
the result.

The coding was done in MIDE-51 and it was built in it to form a corresponding
.hex file. Then we implemented the circuit in Proteus software. We uploaded the
.hex file in the microcontroller. The whole program was burnt into the 8051 Kit.

Circult in Proteus

The given figure shows the full circuit of our project. This circuit consists of a few
components which are mentioned below:

AT89C51
BUTTON
CAPACITOR
CRYSTAL
LMO16L
RESISTOR
RESPACK-8

O O O 0O O O O

1 =& 2 L@

4 — @ 5 =%

LLLLLL
— ot — T

s
!

7 8
—5 o4 —

mmmmmmmmmmmmmm
%

R1
e

—
|
=
{
i
fo]
i
‘ {
]
AT
-
i

Figure: Circuit diagram

As we can see in the figure, the LCD data pins DO-D7 is connected with Port-1 of
microcontroller. VVSS is grounded. VDD and VEE are connected with EA pin of
microcontroller. And the RS, RW and E pins of LCD are connected to pins P2.0,
P2.1 and P2.2 respectively for initializing the LCD. Pins 18 and 19 of

microcontroller are connected with the crystal oscillator. The RST pin has been
provided with a 5V DC. A 4x4 keypad has been connected with the
microcontroller 8051.

CRG 00H
START: LCALL MEM CLEAR
MOV RO, #50H

MOV R1, &4
MOV RE, &0
MOV R7, #00H
MOV R, £33H
LCALL COMNWERT
MOV B, #0EH
LCALL COMNWRT
MOV R, 201H
LCALL COMNWRT
MOV P3, #0FFH
MOV RO, £50H

Kl: MOV PO, #0
MOV R, E3
ANL A, #00001111B
CJHE A, #00001111E,K1

K2: LCALL DELAY
MOV R, B3
ANL A, #00001111E
CJHE A,#00001111B,OVER
SIMP K2

OVER:LCALL DELAY
40V 1, B3
ANL B, #00001111E
CJNE R, #000011118,0VERL
SIMP K2

OVERl: MOV P0,#11111110E
40V 1, B3
ANL B, #00001111E
CJNE R, $#000011118,ROW_0
40V PO, $11111101B
MOV B, B3
ANL B, #00001111E
CJNE R, $#00001111B,ROW_1
40V PO, $11111011B
MOV B, B3
ANL B, #00001111E
CJNE R, $#00001111B,ROW_2
MOV P0,#11110111B
40V 1, B3
ANL B, #00001111E
CJINE R, $#00001111B,ROW_3
LIMP K2

ROW_0:MOV DFIR, #ECODEOD
5JMF FIND
ROW_1:MOV DFIER, #ECODEL
5JMF FIND
ROW_2:MOV DFIR, #ECODEZ
5JMF FIND
ROW_3:MOV DFIR, #ECODE3
5JMF FIND
FIND:ERC &
JHC MATCH
INC DFIR
5JMF FIND

MATCH:CLE &
MOVC L, BR+DETR
LCALL DATAWRT
INC R7
LCALL CHECE

CHECK: CJHE &,#"+",NOT_FLUS
MOV T0H,A
LCALL COMVERT
LJMF K1

Keyboards are organized in a matrix of rows and columns. The CPU accesses both
rows and columns through ports. Therefore, with two 8 bit ports an 8x8 matrix of
keys can be connected to a microcontroller. When a key is pressed a row and a
column make a contact. Otherwise there is no connection between rows and
columns.

A 4x4 matrix connected to two ports is shown in the figure above. The rows are
connected to an output port and the columns are connected to an input port.

It is the function of the microcontroller to scan the keyboard continuously to detect
and identify the key pressed. To detect a pressed key the microcontroller ground all
rows by providing zero to the output latch, and then it reads the columns. If the
data read from columns is D3-D0 = 1111, no key has been pressed and the process
continues till key press is detected. If one of the column bits has a zero, this means
that a key pressed has occurred.

NOT_PLUS: CJNE A,#'-',NOT_MINUS
MOV 70H,A
LCALL CONVERT
LJMP K1

NOT_MINUS: CJNE A, #'*',NOT MUL
MOV 70H,A
LCALL CONVERT
LJMP K1

NOT_MUL: CJNE R,#'/',NOT_DIV
MOV 70H,A
LCALL CONVERT
LJMP K1

NOT_DIV: CJNE &,#'=", NOT_EOQ

;CJNE 70H,#00,L1
LCALL CONVERT
LCALL EQUAL
LJMP K1

NOT_EQ: CJNE Z,#'E",STORE
LCALL CLEAR
LCALL MEM CLELR
LJMP K1

STORE:
CLR C
SUBE R, #30H
MOV R6,A

MOV A, S50H
MOV B, £10D
MUL AB
MOV S0H, A
MOV R,51H
MOV B, £10D
MUL AB
MOV 51H,R
MOV R,52H
MOV B, £10D
MUL AB
MOV 52H,R
MOV A,RéE
MOV @RO,A
INC RO

CLR A

RET

CONVERT: CLR C
MOV L, S50H
ADD A,51H
ADDC A,52H
MOV @R1,A
INC R1
LCALL MEM CLR
MOV RO, #50H
RET

EQUAL:
CLE C
MOV L, TOH
CJNE E,#'+',MINUS
MOV L, 60H
MOV B, 61H
0D L,B
LCOARLL DISPLAY
LJMF K1

MINUS: CLR C
CJNE R, #'-',MULTIPLICATION
MOV L, 60H
MOV B, 61H
CLR C
CJNE L,B,MIN CHK

MIN POS:MOV A, 60H
MOV B, 61H

MIN_NEG:
CLR C
SUEE L,B
LCALL DISPLAY
LIMP K1

MIN CHE: JNC MIN BOS
MOV R, #"-"
LCALL DATAWRT
MOV R, 61H
MOV B, 60H
SJMP MIN NEG

MULTIPLICATION: CLR C
CJNE L,#'%",DIVISION
MOV B, 60H
MOV B, £1H
MUL AB
LCALL DISPLAY
LIMP K1

DIVISION: CLR C
MOV L, 60H
MOV B, 61H
DIV LB
LCALL DISPLAY
LIMP K1

DISPLAY:MOV B, £10D
DIV LB
MOV R7,B
MOV B, #10D
DIV LB
ADD A, #30H
LCALL DATAWRT
MOV A,B
ADD A, #30H
LCALL DATAWRT
MOV A,R7
ADD A, #30H
LCALL DATAWRT
RET

CLERAR: MOV &,#1
LCALL COMMWRT
LJMF START

MEM CLERR: MOV 50H,#00H
MOV S51H, #00H
MOV S52H, #00H
MOV 53H, #00H
MOV 60H, #00H
MOV 61H, #00H
MOV 62H, #00H
MOV TOH, #00H

MEM CLR: MOV S50H,#00H
MOV S51H, #00H
MOV S52H, #00H
MOV 53H, #00H
RET

CLE FZ.0
CLE Fz.1
SETB F2.:2
LCALL DELAYZ
CLE Fz.2
RET

COMNWRT : MOV P12

DATAWRT :MOV P1,R
SETB P2.0
CLR PF2.1l
SETB P2.2
LCALL DELRYZ
CLR 2.2
EET

DELAY:

BUSH 3
BUSH 4
BUSH 3
MOV B3, 225
L3:MOV R4, £4
L2:MOV RS, £95
L1:DJNZ BS,L1
DJNZ B4,L2
DJNZ B3, 13
WOF
NOP
NOP
NOP
NOP
NOF
NOF
NOP
NOP
NOP
NOP
NOF

HOF
HOP
HOF
HOP
NOF
HOF

&
o
L LR

DELAYZ:
FUSH ©
FUSH 7
MOV R&, #3530
R1:MOV R7,£253
A2:DJHZI R7,A2
DJHZ R&,AL
BOP 7
POF @
RET

KCODED: DB '/','=',"0",'E"

KCODEL: DB '#','g', "g", "7

KCODEZ2: DB '=','6',"5",'4"

KCODE3: DB '+','3',7'2%,'1°
END

We at first allocated memory locations for the inputs given by the user. So both the
numbers and the operation to be done are stored in different registers at first. Then
we checked whether the user wants addition, subtraction, multiplication and
division. If none of these operations are asked, then either the operation is ‘equal’
or ‘clear memory’.

According to the operation given, the subroutines of Addition, Subtraction,
Multiplication and Division are called. Then after performing the operation, the
result is saved in another memory location. Then the result is converted into the
corresponding ASCII and is shown in the LCD.

OQutputs

LCD1
LIMO16L
= TEXT =
O w
W —
- T N e e el
| BN | BRI | BL B B BN N
0 =

Figure: Addition operation

LCD1

LMO16L
ETENT>
1
JF 0w
EXT> 90U 22, S5N83I885
HiE|N HEn BN EE|EE]n
L L=
=
Figure: Subtraction operation
H LCD1
LMO16L
STEXT>
— C1
10uF o w
m <TEXT> U 9B, S5833Z885
| ket 1 et B) B :;;55555
R1 4
8.2k
=FEXT=

Figure: Multiplication operation

LCD1
LMOo16L
=“TEXT=
A 144./12=012_
— C1
10uF w o w =
B <TEXT oY 2%L 85883885
L L LALAL pjn|m|e|u|n|nin
»—i

Figure: Division operation

Conclusion

We can perform all the operations with our calculator for 3 digits. But when the
inputs exceed 4 digits, then only the division operation doesn’t work. And when a
fractional number comes as output after division, then we can see the quotient as
output in LCD only, not the remainder. In case of 4 digits, the result comes
correctly in hexadecimal format stored in multiple memory locations. Just the
conversion from hexadecimal to decimal could not be done correctly.

